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ABSTRACT

Greenland climate variability is connected to internal and external sources of global climate forcing in six

millennium simulations using Community Climate System Model, version 3. The external forcings employed

are consistent with the protocols of Paleoclimate Modelling Intercomparison Project Phase 3. Many simulated

internal climatemodes are characterized over the years 850–1850, including theAtlanticmeridional overturning

circulation (AMOC), the Atlantic multidecadal oscillation (AMO), the east Atlantic pattern (EA), the El

Ni~no–Southern Oscillation, the North Atlantic Oscillation (NAO), the North Atlantic sea ice extent, and the

Pacific decadal oscillation (PDO). Lagged correlation and multivariate regression methods connect Greenland

temperatures and precipitation to these internal modes and external sources of climate variability.

Greenland temperature and precipitation are found to relatemost strongly to NorthAtlantic sea ice extent,

the AMO, and the AMOC, that are themselves strongly interconnected. Furthermore, approximately half of

the multidecadal variability in Greenland temperature and precipitation are captured through linear re-

lationships with volcanic aerosol optical depth, solar insolation (including total solar irradiance and local

orbital variability), the NAO, the EA, and the PDO. Relationships are robust with volcanic aerosol optical

depth, solar insolation, and an index related to latitudinal shifts of the North Atlantic jet. Differences at-

tributable to model resolution are also identified in the results, such as lower variability in the AMOC and

Greenland temperature in the higher-resolution simulations. Finally, a regression model is applied to simu-

lations of the industrial period to show that natural sources alone only explain the variability in simulated

Greenland temperature and precipitation up to the 1950s and 1970s, respectively.

1. Introduction

Since the late 1990s, global and regional climate re-

constructions and simulations have been employed to

isolate the contributions from internal climate modes

and external forcings to climate variability over millen-

nial time scales. In particular, many studies focus on how

unusual global temperature changes over the past century

are in the historical context of global or hemispheric

temperature variability (Frank et al. 2010). However,

separating the roles of external forcings, such as solar

variations and volcanoes, in generating multidecadal

climate variability over the preindustrial millennium

has also been a primary focus (Crowley 2000; Goosse

et al. 2005; Ammann et al. 2007; Jungclaus et al. 2010), as

it is important for the purpose of isolating the climate

effects of greenhouse gases and aerosols since the in-

dustrial revolution. For example, Ammann et al. (2007)

show that, although forcing simulations with varying

amplitudes of multidecadal total solar irradiance vari-

ability generate different global temperatures over the

past millennium, anthropogenic forcings are required

to reproduce observed temperature increases after

1940 (Ammann et al. 2007).

Our study employs millennium-length simulations to

examine the connections between elements of Green-

land ice sheet (GrIS) mass balance and both natural

external forcings (solar insolation and volcanic erup-

tions) as well as internal sources of variability in the

North Atlantic [including the North Atlantic Oscillation

(NAO), the east Atlantic pattern (EA), the Pacific de-

cadal oscillation (PDO), the El Ni~no–Southern Oscil-

lation (ENSO), North Atlantic sea ice extent, the

Atlantic multidecadal oscillation (AMO), and the At-

lantic meridional overturning circulation (AMOC)].

Previous analyses suggest that internal modes can be an

important source of temperature variability in the North
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Atlantic over the past millennium and that natural

external forcings can affect North Atlantic modes of

variability on multidecadal time scales (Tett et al. 2007;

Hegerl et al. 2011; Swingedouw et al. 2011). Thus, in

order to extract the separate roles of both internal and

external climate forcings in generating North Atlantic

climate variability, we employ a modern coupled

atmosphere–ocean general circulation model to con-

struct a ‘‘mini ensemble’’ of six millennium time-scale

simulations. We provide detailed analyses of the con-

nections between the time scales of North Atlantic cli-

mate variability and those associated with natural modes

of climate fluctuations and external climate forcings in

this model. Our study provides a strong foundation

for commenting on the role of anthropogenic forcings

on Greenland temperatures and precipitation in the

industrial-era simulations that have also been performed

using this model.

Understanding the responses of Greenland tempera-

ture and precipitation to anthropogenic forcings is cru-

cial, since both the GrIS and the West Antarctic ice

sheet (WAIS) have already moved from a state of rel-

ative mass balance to one of significant mass imbalance

over the past 20 years (Velicogna and Wahr 2006; Alley

et al. 2007; Peltier 2009; Shepherd et al. 2012). Fur-

thermore, Miller et al. (2012) suggest that sea levels

were approximately 226 5m higher than present under

carbon dioxide concentrations very close to modern

levels (;400 ppmv) during the mid-Pliocene, 3 million

years before present. Global average temperatures in

that period are also inferred to have been 28–38Cwarmer

than present. A rise in sea level of that magnitude re-

quires not only the total elimination of both the GrIS

and theWAIS but also significant mass loss from at least

the periphery of the East Antarctic ice sheet. In the fu-

ture, meltwater generated by the retreat of continental-

scale ice sheets, as well as small ice caps and glaciers, will

again undoubtedly be a dominant contributor to sea

level rise. Given that approximately 38% of the global

population lives within 20 km of a coast and at an ele-

vation less than 20m above mean sea level (Small and

Nicholls 2003), rising global sea levels constitute an

important consequence of anthropogenically driven

climate change.

Numerous analyses indicate that the rate of mass loss

from the GrIS has been accelerating over the past de-

cade [e.g., for a review, see Alley et al. (2010)]. Current

understanding suggests that the causes of this accelera-

tion have been equally divided between increased flow

of outlet glaciers at the margins of the ice sheet and in-

creased meltwater runoff from the ice sheet surface (van

den Broeke et al. 2009). It is also possible that surface

meltwater runoff may be driving some of the dynamical

changes, although Schoof (2010) suggests that any dy-

namic responses to surface melt variability are short

lived. These mass balance changes have occurred con-

currently with temperature increases over the ablation

zone and precipitation increases over the interior of the

ice sheet (Hanna et al. 2008). Such relatively high tem-

peratures and consequent increase in GrIS mass loss

have been commonly understood as components of

polar amplification of anthropogenically induced cli-

mate change (e.g., Masson-Delmotte et al. 2006).

However, in order to validate this claim, we require an

accurate characterization of the amplitudes and time

scales of natural fluctuations in Greenland surface con-

ditions, including both temperature and precipitation.

For example, bothHanna et al. (2008) and Fettweis et al.

(2011) find that Greenlandmelt responds strongly to the

NAO, although an even stronger association is found

with local high pressure blocking over Greenland

through the Greenland blocking index (Hanna et al.

2013). Station measurements have also shown that

temperatures increased over many sites along the

Greenland coast from the 1920s until the 1930s (Chylek

et al. 2006; Box et al. 2009; Wake et al. 2009), which is

a period of warming understood to have been most

probably driven by natural variability (Delworth and

Mann 2000; Ammann et al. 2007). Properly attributing

the causes of recent and past Greenland mass balance

changes will be crucial to enabling probabilistically

accurate predictions of Greenland mass loss in the fu-

ture as greenhouse gas–induced warming continues.

The primary agents of North Atlantic climate vari-

ability are thought to include volcanic aerosols, the

NAO, and sea ice–ocean feedbacks (Hanna et al. 2005;

Fettweis 2007; Hanna et al. 2008; Box et al. 2009;

Schneider et al. 2009; Frauenfeld et al. 2011; Miller et al.

2012). Other natural factors are also hypothesized to

influence Greenland mass balance, including sea ice

distributions (Hanna et al. 2009), changes in heat

transport from the equator to the pole (Box et al. 2009),

atmospheric circulation changes associated with solar

variability (Box et al. 2009), and sea surface temperature

(SST) variations in the North Atlantic ocean immedi-

ately adjacent to Greenland (Hanna et al. 2009).

Volcanic eruptions have been demonstrated to de-

crease Greenland temperatures and reduce runoff dur-

ing the twentieth century in both reanalysis products and

regional models (Hanna et al. 2005; Box et al. 2009).

Hanna et al. (2005) show that positive Greenland sur-

face mass balance values follow years of volcanic erup-

tions in European Centre for Medium-Range Weather

Forecasts (ECMWF) data, resulting from runoff reduc-

tions concurrent with unaffected accumulation. Box et al.

(2009) conclude, based on analyses with the polar version
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of the fifth-generation Pennsylvania State University–

National Center for Atmospheric Research Mesoscale

Model (Polar-MM5), that Greenland temperatures are

more than three standard deviations colder than their

climatological average in years during volcanic erup-

tions. This cooling is found to be strongest over western

Greenland and during winter.

The connections between Greenland temperatures

and precipitation and the NAO have proven less robust.

They are sensitive to the period (Hanna et al. 2008), the

season (Fettweis 2007; Hanna et al. 2008; Frauenfeld

et al. 2011) and the region of Greenland examined

(Fettweis 2007; Frauenfeld et al. 2011). For example,

Hanna et al. (2008) find significant negative correlations

between Greenland average summer temperatures ob-

tained from Greenland climate stations and an NAO

summer index from 1961 to 1991. However, after 1991,

the strength of these correlations decreases. Fettweis

(2007) employs a regional climate model to argue that

temperatures over all of the GrIS are negatively corre-

lated with the usual winter NAO index but only during

winter and predominantly in the southwest sector of the

ice sheet. Similarly, Frauenfeld et al. (2011) demonstrate

that, from 1979 to 2009, the winter NAO index is signif-

icantly related to total annual GrIS melt extent, although

not through relationships with summer temperatures on

the southern coasts of Greenland, where most of the melt

occurs. Precipitation responses to the NAO are charac-

terized by evenmore regional variability (Fettweis 2007).

Fettweis (2007) shows that precipitation is anticorrelated

with the winter NAO index on the western and south-

eastern coasts, particularly during fall and winter, and

positively correlated on the northeastern coast, particu-

larly during summer and fall. These patterns are consis-

tent with the low pressure center of the positive NAO

being located northeast of Greenland, as shown in Fig. 1,

which is discussed below. Overall, Fettweis (2007) finds

that the NAO does not correlate with annual pre-

cipitation averaged over the entire ice sheet and attri-

butes changes in average annual precipitation to other

causes, in particular to increasing greenhouse gas

concentrations.

The roles of sea ice–ocean feedbacks are even more

difficult to identify, since their interactions are complex

and can involve many other processes in the North At-

lantic. Different climate models appear to favor differ-

ent mechanisms of interrelation between the NAO, the

AMOC, the AMO, and North Atlantic sea ice (see a

review in Grossmann and Klotzbach 2009; Danabasoglu

2008; d’Orgeville and Peltier 2009b; Escudier et al. 2013;

Swingedouw et al. 2013), although some consistencies

are present. For example,models in the Intergovernmental

Panel on Climate Change (IPCC) Fourth Assessment

Report (AR4) indicate that the AMOC leads and is

strongly correlated with the AMO (Medhaug and

Furevik 2011). Observational studies are of limited

usefulness for discriminating between these different

mechanisms because of the multidecadal time scales of

the interactions and the limited datasets available for

these variables (Danabasoglu et al. 2012; Swingedouw

et al. 2013). Time scales of the interaction processes

generally fall either between 20 and 30 yr or between 50

and 100 yr (d’Orgeville and Peltier 2009b; Danabasoglu

et al. 2012; Escudier et al. 2013; Swingedouw et al.

2013), and the Community Climate System Model,

version 3 (CCSM3), has exhibited AMOC variability in

each of these categories (Danabasoglu 2008; d’Orgeville

and Peltier 2009b). Danabasoglu (2008) identifies a 21-yr

oscillation in AMOC variability that is triggered equally

by temperature and salinity variations at the site of deep-

water formation in the Labrador Sea. The temperature

and salinity variations are attributed to changes in the

strength of the subpolar gyre circulation, which responds

to variations in the NAO (Danabasoglu 2008). Sea ice

is forced in opposite ways by the NAO and the AMOC

and influences the phasing of the AMOC oscillation

(Danabasoglu 2008). In contrast, d’Orgeville and Peltier

(2009b) identify a 60-yr periodicity in the AMOC from

another set of CCSM3 simulations. In their runs, the

AMOC responds primarily to salinity changes caused by

barotropic circulation interactions with the bottom ba-

thymetry (d’Orgeville and Peltier 2009b). They note that

the NAO may play a more subsidiary role in generating

AMOC variability (d’Orgeville and Peltier 2009b). Thus,

Greenland temperatures and precipitation are likely

connected to many climate processes in the North At-

lantic through complex interactions and disentangling

their separate contributions is a challenge. Nevertheless,

sea ice variability has previously been demonstrated to

play an important role in driving large amplitude changes

in inferred temperatures from ice cores at Summit,

Greenland during the Younger–Dryas event (Tarasov

and Peltier 2005; Peltier et al. 2006).

Other studies employ model simulations to analyze

the roles of internal climate variability in generating

regional and global temperature variability in the period

prior to extensive observational records being available

(Tett et al. 2007; Hegerl et al. 2011; Swingedouw et al.

2011). Two challenges for accurately characterizing past

climate variability using model simulations are that the

results depend first on the ability of the model to char-

acterize themodes of natural climate variability well and

second on the accuracy of model forcing reconstructions

over the target period. Furthermore, it is assumed that

the structures of the natural climate modes do not

change in response to the forcing.
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Hegerl et al. (2011) employ both models and obser-

vations to identify significant signatures of external cli-

mate forcings in European temperatures during winter

and spring from 1500 to 1996. They create estimates of

internal climate variability over this period by regressing

a historical temperature reconstruction against tem-

plates of European climate responses to a number of

sources of internal and external variability obtained

from three previously published atmosphere–ocean

GCM (AOGCM) millennium runs. They then examine

the residuals for signatures of external forcings and ob-

tain robust responses to volcanic and anthropogenic

forcings. This method treats internal and external cli-

mate forcings as independent, even though external

forcings may project onto internal modes of variability.

Tett et al. (2007) show that the NAO exhibits no change

in behavior when natural and anthropogenic forcings

are included inHadley Centre CoupledModel, version 3

FIG. 1. Projections of the (a),(b) NAO and (c),(d) EA onto NorthernHemisphere sea level pressures (hPa) for (a),(c) T42 and (b),(d) T85

simulations. Superimposed over these contours are climatological wind vectors (m s21) for DJF from the corresponding simulations.
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(HadCM3), simulations as compared to a control run.

On the other hand, the AMOC shows a modest increase

in multidecadal variability. In general, Tett et al. (2007)

demonstrate that North Atlantic temperatures and sea

ice cover respond more strongly to anthropogenic forc-

ings than to natural forcings, particularly onmultidecadal

time scales. On the other hand, Swingedouw et al. (2011)

identify significant responses in both the simulated NAO

and AMOC to total solar irradiance forcing, with time

lags of 40 and 10 yr, respectively. In particular, they note

that from 1750 to 1800 the NAO index in their single

simulation deviates negatively from its mean value

(Swingedouw et al. 2011). They suggest that this may be

a delayed response to the solar Maunder Minimum, al-

though Swingedouw et al. (2011) point to the need for

more ensemblemembers in order to validate connections

over this time period.

2. Design of the ensemble of numerical simulations

Our analyses of the controls on Greenland ice sheet

mass balance are based on a mini ensemble of six

millennium time-scale climate simulations. These simu-

lations span the last 1000 years of the preindustrial period

and are extended into the instrumental era, when an-

thropogenic warming of the lower atmosphere has oc-

curred. Our goal is to employ the results from this

ensemble to separate the anthropogenic signal from

natural variability. To this end, we have produced this

set of six long simulations to explore the nature of

multidecadal components of natural internal variabil-

ity in the North Atlantic, as it is variability on these

time scales that can most effectively obscure the re-

sponse of the GrIS to anthropogenic climate change.

We chose to simulate the period 850–1850, because it

covers a sufficiently recent era that we expect the nat-

ural climate regime to be similar to that of the present

day. This is expected to contrast sharply with the sub-

sequent ‘‘Anthropocene’’ when greenhouse warming has

come to dominate.

a. The numerical model and the design of the
millennium-time-scale experiments

For all our simulations, we employ CCSM3, which is

a fully coupled atmosphere–ocean general circulation

model developed by the National Center for Atmo-

spheric Research (NCAR) (Collins et al. 2006). This

model was run with fully interactive components for the

atmosphere, land surface, sea ice, and oceans. The at-

mospheric and land components consist of Eulerian

spectral dynamical cores operating on a sharedGaussian

grid, and the ocean and sea ice components each apply

finite difference methods on a shared grid with the north

pole displaced to a position over Greenland (Collins

et al. 2006). The model resolutions chosen for this study

represent a compromise between the need for high

resolutions over Greenland in order to capture regional

distributions of temperature and precipitation and low

enough resolution to enable multiple millennium-length

global simulations to be performed within the limits

imposed by available computational resources. Given

these constraints, we have elected to create six transient

simulations, including three at an atmospheric spectral

resolution of T42 and three at a resolution of T85. T42

and T85 are the two highest spectral resolutions avail-

able for the atmospheric model and correspond to

roughly 2.88 3 2.88 and 1.48 3 1.48, respectively, in

horizontal resolution (Collins et al. 2006). Both resolu-

tions of the atmospheric model have 26 vertical levels on

a hybrid coordinate (Collins et al. 2006) that reaches an

altitude of 3.5 hPa. The ocean and sea ice components

are identical in all simulations and share a grid roughly

equivalent to 18 in longitude with variable latitudinal

resolution that corresponds roughly to 0.58 (Collins et al.
2006).

Separate control runs for each resolution were in-

dependently equilibrated to boundary conditions for the

year 850. They were both initialized from partially

equilibrated 1870 control runs, although the T85 sea ice

and ocean components were initialized from the lower-

resolution 850 control run after it had completed part of

its equilibration process. The equilibration criteria were

decided upon following analyses of the adjustment time

scales present during the equilibration process and are

conservative compared to previous work (Hack et al.

2006). They are first for globally averaged surface tem-

peratures and top-of-model net radiation fluxes to be

without significant trends for at least 200 years, and

second for the top-of-model net radiation fluxes to be

within 60.1Wm22. The equilibration process required

2090 and 1300 simulation years for the T42 and T85 res-

olutions, respectively, after which the control runs were

continued for a further 1000 simulation years. The

equilibration criteria are found to be effective, as the T42

(T85) control run exhibits least squares–minimized linear

trends in both globally averaged surface temperatures

and top-of-model net radiation fluxes of 20.038Cka21

(20.078Cka21) and 0.02Wm22 ka21 (0.03Wm22 ka21),

respectively, following equilibration. Furthermore, both

control simulations exhibit mean top-of-model net radi-

ation fluxes of 20.07Wm22 following the equilibration

procedure, where positive indicates a downward flux. All

transient simulations at a given resolutionwere initialized

from the same year in their corresponding control run

and were run from year 850 to 1850, although because

of irretrievable loss not all of these data are available.
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Industrial simulations were then initialized from the end

points of each of the millennium simulations and run to

year 2000. The set of six model simulations provides the

basis for all of our analyses presented below.

Forcing fields provided to the model include green-

house gas concentrations, ozone concentrations, volcanic

aerosol masses, total solar irradiance, aerosolmassmixing

ratios and orbital configuration. All of the preindustrial

simulations were forced with the same ozone and aerosol

climatologies, and total solar irradiance and orbital time

series. All but one of the preindustrial simulations were

forced with time-varying greenhouse gas concentrations.

In the remaining T42 simulation, greenhouse gas con-

centrations were held fixed at year 850 values. Finally, two

volcanic forcing reconstructions were employed. All of

the industrial simulations were forced with the same

ozone, total solar irradiance, and orbital configuration

time series.Modificationsweremade by the authors to the

CCSM3 source code in order to allow time-varying pre-

scribed aerosol masses. All but one of the simulations

employed time-varying greenhouse gas concentrations

and aerosol masses, while the remaining T42 simulation

held them fixed at year 1850 conditions. Again, the same

two volcanic reconstructions were employed over this

time period. An outline of the differences between the

simulations is provided in Table 1. Further descriptions of

the forcing datasets are provided below. Note that

Mill_T85_all_Crowley and Mill_T85_all_Crowley2 simu-

lations are forced identically from the same initialization

point, but they are not the same because of updates to the

supercomputer software available at their run times.

Preindustrial datasets were specified consistent with

the Paleoclimate Modelling Intercomparison Project

Phase 3 (PMIP3) last-millennium experiment as de-

scribed in Schmidt et al. (2012). Industrial simulation

datasets were consistent with phase 5 of the Coupled

Model Intercomparison Project (CMIP5) historical ex-

periment where possible (CMIP5 2011).

The datasets employed to specify the volcanic aerosol

forcing history are those from Gao et al. (2008) in units

of mass and Crowley et al. (2008) in units of aerosol

optical depth (AOD). Volcanic reconstructions over

this period depend on ice core data that have limited

spatial information and dating uncertainties (Gao et al.

2008). Consequently, other data sources are employed

to infer global aerosol distributions, including observa-

tions of recent events and simulations of volcanic aerosol

dispersal (Gao et al. 2008). Similarly, volcanic eruption

dates are refined by comparing multiple ice cores and

referring to historical accounts (Gao et al. 2008). CCSM3

requires that the volcanic aerosols are specified in terms

of their mass distribution. Therefore, aerosol optical

depths were converted to mass distributions by inverting

the shortwave extinction calculation used internally

within the atmospheric component of CCSM3, the

Community Atmosphere Model, version 3 (CAM3), to

obtain an effective extinction coefficient for the in-

coming shortwave radiation spectrum specified in the

model (Collins et al. 2004). Then, a distribution of total

column masses was calculated. An average volcanic

vertical profile was taken from the Gao dataset, nor-

malized, and multiplied by the Crowley total column

masses in order to create consistent mass distribution

fields. This method depends on the assumption that all

volcanic eruptions reached the same height. Globally

averaged aerosol optical depths are plotted in Fig. 2a

as a function of time for both the Crowley and Gao

datasets.

The total solar irradiance forcing time series was

obtained fromN.Krivova (2009, personal communication)

TABLE 1. List of numerical simulations used in these analyses with their characteristics.

Name Resolution

Dates

Orbital Volcanic Solar Trace gases AerosolsStart End

Mill_T42_ctl T42 2940 3940 Fixed Fixed Fixed Fixed Fixed

Mill_T85_ctl T85 2150 3150 Fixed Fixed Fixed Fixed Fixed

Mill_T42_all_Gao T42 932 1850 Transient Gao Transient Transient Fixed

Mill_T42_all_Crowley T42 850 1850 Transient Crowley Transient Transient Fixed

Mill_T42_sol_Gao T42 850 1850 Transient Gao Transient Fixed (850) Fixed

Mill_T85_all_Gao T85 1000 1850 Transient Gao Transient Transient Fixed

Mill_T85_all_Crowley T85 1100 1850 Transient Crowley Transient Transient Fixed

Mill_T85_all_Crowley2 T85 850 1850 Transient Crowley Transient Transient Fixed

Ind_T42_all_Gao T42 1850 2000 Transient Gao Transient Transient Transient

Ind_T42_all_Crowley T42 1850 2000 Transient Crowley Transient Transient Transient

Ind_T42_sol_Gao T42 1850 2000 Transient Gao Transient Fixed (1850) Fixed

Ind_T85_all_Gao T85 1850 2000 Transient Gao Transient Transient Transient

Ind_T85_all_Crowley T85 1850 2000 Transient Crowley Transient Transient Transient

Ind_T85_all_Crowley2 T85 1850 2000 Transient Crowley Transient Transient Transient

9750 JOURNAL OF CL IMATE VOLUME 26



for the years 850–2010 and is described in Vieira et al.

(2011). Their reconstruction uses different methods for

years before and after 1706, as direct observations of sun-

spot area are only available during the latter period

(Krivova et al. 2007). Vieira et al. (2011) estimate the total

solar flux as a linear combination of the percentage of the

sun’s surface filled with sunspots multiplied by average

fluxes associated with each one. Their model yields total

solar irradiance variations on multicentennial and decadal

time scales. For the earlier period, reliable sunspot obser-

vations are not available, so sunspot areas are obtained

frommagnetic openfluxmeasurements reconstructed from

records of cosmogenic 14C over cycles spanning each date

(Vieira et al. 2011). These records have adequate temporal

resolution only on time scales of decades, so Vieira et al.

superimpose an artificial 11-yr cycle onto their decadally

averaged total solar irradiance reconstructions with a fixed

length of 11yr and an amplitude scaled to the average ir-

radiance value (N. Krivova 2009, personal communi-

cation). This total solar irradiance reconstruction yields a

difference of 0.1% between the Maunder Minimum and

the present day, categorizing it as an irradiance re-

construction with relatively small centennial variations.

The time series is plotted in Fig. 2b.

Orbital forcing was incremented in 10-yr time steps,

using the Berger (1978) scheme already part of the

model code and a code modification developed by

B. Briegleb and B. Kauffman (N. Rosenbloom 2009,

personal communication). CCSM3 uses orbital forcing

as a multiplicative factor with the total solar irradiance

to define the solar insolation at the top of the atmo-

sphere. Consequently, we treat the two variables as

combined from now on.

Greenhouse gas concentrations varied relatively little

over the preindustrial millennium (Schmidt et al. 2012).

On the other hand, the CMIP5 historical concentration

time series from 1850 to 2000 (Meinshausen et al. 2011)

indicate a fast-increasing trend throughout the period.

The greenhouse gas concentration time series are shown

in Fig. 2c.

Aerosol and ozone concentrations are specified to be

climatological at 1850 values in the millennium simula-

tions. Subsequently, they are specified from CMIP5

historical datasets until 2000 (Lamarque et al. 2010).

Note that the ozone datasets have been generated as-

suming emissions of anthropogenic species, so the nat-

ural forcing–only industrial run does indirectly include

some influence of anthropogenic emissions.

b. Modeled climate biases and resolution differences

CCSM3 exhibits considerable improvements over its

predecessor (Collins et al. 2006) and reproduces ob-

served Arctic sea ice declines over the twentieth century

better than many other models included in the CMIP3

database (Stroeve et al. 2007). Furthermore, the sea ice

component of this model was recently found to be far

superior to representations of this climate component in

other coupled models during analyses of the ‘‘snowball’’

climate of the Neoproterozoic era (Yang et al. 2012a,b).

Nevertheless, CCSM3 or CAM3 exhibit biases in the

North Atlantic and Arctic regions that may influence the

analyses discussed here (deWeaver andBitz 2006;Holland

et al. 2006; Hurrell et al. 2006; Large and Danabasoglu

2006; Higgins and Cassano 2010; Grotjahn et al. 2011).

During December–February (DJF), sea level pres-

sures north of 508N are lower and sea level pressures in

the northern subtropics are higher than corresponding

pressures in 40-yr ECMWFRe-Analysis (ERA-40) data

(Hurrell et al. 2006; Higgins and Cassano 2010). These

biases correspond to anomalously warm Arctic tem-

peratures overall (Grotjahn et al. 2011). Also, the Ice-

landic low pressure center tends to be too low and too

extensive, which is associated with the North Atlantic

FIG. 2. Forcing data time series employed in the millennium-

time-scale simulations. (a) Volcanic aerosol depth averaged over

the globe and plotted for Gao et al. (2008) in black and Crowley

et al. (2008) in red. (b) Total solar irradiance reconstructed by

Vieira et al. (2011). (c) Greenhouse gas forcing time series, with

CO2 in parts permillion andCH4 andN2O in parts per billion.Data

for years 850–1850 are from the PMIP3 specifications, and data for

1850–2005 are from the CMIP5 historical datasets.

15 DECEMBER 2013 ANDRES AND PELT I ER 9751



storm track being too strong and too zonal. As a conse-

quence, the location of the end of the storm track is

shifted southward, so the Barents Sea experiences

a positive pressure bias and northern Europe experi-

ences a negative pressure bias (Hurrell et al. 2006;

Grotjahn et al. 2011).

The North Atlantic Current is also too zonal, which

yields salinity and sea surface temperature biases south

of Greenland of up to 24 psu and 2108C, respectively
(Large and Danabasoglu 2006). Danabasoglu (2008)

note that the sites of largest sea surface temperature and

sea surface salinity bias coincide with the regions of

highest variability in these variables. Consequently, they

suggest that these biases may be responsible for an un-

realistic amplitude and pattern of SST variability in the

North Atlantic (Danabasoglu 2008).

Overall, Arctic sea ice is too extensive during boreal

winter but matches reconstructions during the summer

(Holland et al. 2006). The Labrador Sea is too fresh and

has excessive winter sea ice cover (Holland et al. 2006;

Large and Danabasoglu 2006), while the Barents Sea

receives excessive amounts of ocean heat transport and

has too little sea ice coverage (Holland et al. 2006).

Furthermore, because of the atmospheric circulation

biases mentioned above, the distribution of sea ice in the

Arctic basin does not match distributions inferred using

an offline sea ice model forced by National Centers for

Environmental Prediction (NCEP)–NCAR reanalysis

data (deWeaver and Bitz 2006). Whereas NCEP–

NCAR winds produce sea ice thickness maxima against

the Canadian Arctic Archipelago andGreenland coasts,

CCSM3 annual sea ice thickness is thickest along the

Siberian coast instead (deWeaver and Bitz 2006).

Furthermore, differences in Arctic climate exist

depending on the atmospheric and land resolution

employed. For example, Arctic sea ice is generally

thicker in the T42 configuration than in the T85 config-

uration, which can be partly explained by the fact that

surface air temperatures are roughly 28C colder across

the Arctic in the T42 configuration than the T85 con-

figuration (deWeaver and Bitz 2006; Hack et al. 2006).

Also, deWeaver and Bitz (2006) show that only the T85

configuration exhibits any maxima in climatological

annual sea ice thickness along the northern coasts of the

Canadian Arctic Archipelago and Greenland, in partial

agreement with sea ice forced by NCEP–NCAR winds.

During the summer, the T42 model configuration actu-

ally generates a polar anticyclone of equivalent strength

to the polar cyclone found in NCEP–NCAR data, while

the T85-resolution model does not exhibit either struc-

ture (deWeaver and Bitz 2006). As a result, in both

model configurations, less sea ice is rafted against the

Canadian and Greenland northern coasts than in

reanalysis (deWeaver andBitz 2006). Finally, less sea ice

is exported from the Arctic to the North Atlantic in the

T85 configuration than the T42 configuration (deWeaver

and Bitz 2006), which implies that there is also less

freshwater deposited there.

Large and Danabasoglu (2006) note that the ocean

biases in CCSM3 are not affected significantly by in-

creasing the resolution of the atmosphere and land

models fromT42 to T85. Nevertheless, ocean circulation

differences do exist. Namely, Bryan et al. (2006) report

that, in present-day control experiments using fully

coupled CCSM3, the mean North Atlantic meridional

overturning streamfunction is stronger and extends

deeper with atmosphere and land components at T85

truncation rather than T42. They demonstrate that the

difference in strength is primarily in the secondary for-

mation region between 458 and 508N, although the lo-

cations of the deep-water formation regions are quite

similar (Bryan et al. 2006). Bryan et al. (2006) also note

that the AMOC exhibits stronger decadal variability in

their T85 control simulation than their T42 control.

AMOC variability appears suppressed (after detrend-

ing) in transient simulations initialized from their con-

trol runs at both resolutions, although this suppression is

stronger in the T85 simulation. Nevertheless, the T85

variability remains 50% stronger than in the T42 simu-

lation during transient forcing (Bryan et al. 2006).

However, during subsequent stabilization experiments

initialized from the transient runs, the variability is

slightly weaker in the T85 configuration than in the T42

(Bryan et al. 2006).

Grotjahn et al. (2011) note that there are wind biases

over Greenland resulting from topography differences

between the model and ERA-40 data. We also find that

there are resolution differences in the topography of

Greenland. Figure 3 shows topographic height contours

for Greenland derived from climatological geopotential

heights for the (i) T42 and (ii) T85 control runs. Overlaid

on these contour plots are the grids employed by each

model configuration. Greenland boundaries as defined

in these analyses include 115 grid cells in the T42 sim-

ulations and 421 grid cells in the T85 simulations. The

higher-resolution configuration conforms much more

closely to the subcontinent boundaries, yielding a slightly

higher total area of 2.45 3 106 versus 2.36 3 106 km2.

Over these same boundaries, the average geopotential

heights for Greenland are 1200m abovemean sea level in

the low-resolution simulations and 1400m in the high-

resolution runs, with peak heights over 300m higher

in the T85 configuration than in the T42 configuration.

These average height differences correspond to approx-

imately 1.58C difference in mean temperatures based on

average lapse rates from the T42 simulations.
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Finally, precipitation is a difficult process for climate

models to capture, since it depends upon convective and

cloud-related dynamical processes that extend over

a wide range of spatial scales. Consequently, in CCSM3,

clouds and precipitation are parameterized and tuned

separately for each model configuration (Hack et al.

2006). Large precipitation biases occur, particularly in

the intertropical convergence zone and continental sub-

tropics, which affect ocean salinity distributions (Boville

et al. 2006; Hack et al. 2006).

c. Analysis methods used to connect Greenland mass
balance variability to other climate indicators

We have applied multiple linear regression analysis

using least squares estimates of the regression parame-

ters to connect Greenland average surface temperatures

and Greenland total annual precipitation to various

climate indicators. These analyses are performed on

annually averaged data smoothed by a Gaussian filter

with a half-width of 14 yr. The year in these analyses is

defined to start in September and end in August, so that

seasons of sea ice growth and melt and Greenland mass

balance are kept intact. The year number equals the

calendar year of January included in that time period.

Equation (1) shows the multiple linear regression

equation applied in this paper for temperatures, where

T represents Greenland average annual temperatures,

XT 5bT ,volcXvolc 1bT,solarXsolar

1bT ,NAO1EAXNAO1EA 1bT,NAO2EAXNAO2EA

1bT ,PDOXPDO1 � .

(1)

The equation for Greenland total annual precipitation is

the same with T replaced by P. The regression param-

eters are given by bT, , where the second subscript in-

dicates the climate variable being considered. Each

climate time series is represented as XT, and has been

centered and normalized by its standard deviation prior

to the regression analysis. The residuals are denoted by �.

The regressions were applied to synchronous datasets,

except for the volcanic time series, which was lagged by

1 yr. This lagwas chosen on the basis of lagged correlation

analyses (not shown) and was detected in all the simula-

tions and for both temperature and precipitation.

The variances of the regression parameters are given

by

var(b)5 s2(X 0X)21, where s25 �
n

i51

�2i
n2 k

(2)

is the variance of the residual terms, and b is the vector

of regression parameters calculated by the model. The

termX is the array of predictor variable time series, and

n 2 k represents the effective number of degrees of

freedom in the regression calculation. Further details

concerning the way in which these values were calcu-

lated are presented in the appendix.

The regressions were performed separately for each

simulation, and then the regression parameters obtained

over the preindustrial period were employed to predict

the contribution of natural variability to Greenland cli-

mate variability over the industrial period. The differ-

ences between this estimate and simulated Greenland

conditions allow us to assess whether the anthropogenic

signal is separable from natural variability in simulated

Greenland conditions during this period.

3. Results

a. Characterizing global climate in the preindustrial
simulations

We begin these analyses by first presenting compari-

sons of Northern Hemisphere surface temperature time

FIG. 3. Greenland topography (km) as determined by climatological surface geopotential heights for the (a) T42 and (b) T85 control runs.

Overlaid are the grids used by each of these model configurations.
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series generated from our simulations with proxy re-

constructions available for the preindustrial millennium.

Following this discussion, we next introduce the modes

of global climate variability examined in this study and

characterize their behaviors over this time period.

Time series of annually averaged simulated Northern

Hemisphere surface temperature anomalies are plotted

for both industrial and preindustrial periods in color in

Fig. 4with proxy reconstruction time series from the IPCC

AR4 paleoclimate chapter in gray (Jansen et al. 2007).

Temperature anomalies are defined with respect to mean

values for each run over the period 1600–1850,which is the

longest preindustrial period common to the proxy datasets

and simulations. The observational Hadley Centre Cli-

mate Research Unit variance-adjusted near-surface air

temperature anomalies, version 4 (CRUTEM4v), dataset

(Jones et al. 2012) is overlaid in black. Since there are no

observational data prior to 1850, its mean over 1860–1999

was defined to equal that of the simulations. The first

attribute of Fig. 4 to note is that simulated Northern

Hemisphere temperatures and proxy reconstructions

exhibit abrupt warming trends beginning in the early

twentieth century in all cases except for the natural

forcing–only run, Mill_T42_sol_Gao. Unlike the proxies,

simulated temperatures and observations initially cool

during the industrial period and do not begin warming

until the 1920s. From then until themiddle of the century,

simulated, observed, and proxy temperatures increase by

a similar amount. The increase in temperatures near the

end of the century is similar between the observations

and simulations. Most of the proxy records also show a

resumption in warming, although they do not extend as

far in time.

Second, simulated temperatures are warmer in the

medieval period than afterward. Eight of the proxy re-

cords cover both time periods, which we define by years

1000–1200 and 1400–1900, and their average temperature

decrease is20.178 6 0.048C (p, 0.005). The simulations

produce a slightly stronger temperature decrease, with an

average difference of 20.308 6 0.028C (p , 0.001) over

all the simulations butMill_T85_all_Crowley, which does

not span all of both periods. Causes of the temperature

decrease are debated (e.g., Schneider et al. 2009;

Servonnat et al. 2010; Miller et al. 2012), but we find it to

FIG. 4. Northern Hemisphere temperature reconstructions for millennium simulations in

colors and IPCC AR4 proxy reconstructions (Jansen et al. 2007) in gray. Instrumental obser-

vations are overlain in black, such that their average from 1860 to 1999 equals that of the

simulations over that period.
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be contemporaneous with a slowing down of the AMOC,

reduction in theAMO, and increase inNorthAtlantic sea

ice extent in our simulations.

Beyond capturing the decreasing temperature trend,

the simulations also capture some of the response to

external forcings in the preindustrial millennium. Cor-

relations between annual temperatures from complete

proxy records and transient simulations over the years

1100–1850 are on average 0.30 6 0.03 (p , 0.001) prior

to smoothing and 0.40 6 0.02 (p , 0.001) after. These

correlations are not due to coherence in the internal

modes of variability, as there are no significant differ-

ences in correlations between simulations of the same

resolution versus those of a different resolution, which

are initialized from different control simulations. Thus,

the simulations are capturing some of the forced tem-

perature response over the preindustrial millennium,

particularly on decadal time scales and longer. However,

the simulations are not reproducing the proxy temper-

ature responses entirely, as correlations between the

simulations are greater than between themselves and

the proxies [0.58 6 0.02 (p , 0.001) and 0.827 6 0.007

(p, 0.001) for simulations employing different and the

same volcanic forcings, respectively]. Again, resolution

makes no difference in the correlations of the simula-

tions with each other, which indicates that these corre-

lation values are not due to coherence in the modes of

internal variability. Differences in the responses to ex-

ternal climate forcings may indicate inaccuracies in the

forcing datasets, problems with the model’s ability to

replicate the responses to the forcings, or inaccuracies in

the proxy records.

The most noticeable discrepancies between these

datasets occur when simulated Northern Hemisphere

temperatures exhibit much larger temperature responses

to large volcanic events than proxy reconstructions do.

These differences yield higher correlations between

simulations employing the Crowley et al. (2008) volcanic

reconstruction, which has smaller average event magni-

tudes compared with those employing the Gao et al.

(2008) reconstruction (0.36 6 0.01 and 0.252 6 0.009,

respectively, and difference p , 0.001). These simulated

temperature responses may be unrealistically large, as

other analyses indicate that models exaggerate the cli-

mate responses to large volcanic events (Gent et al. 2011;

Timmreck et al. 2010). Gent et al. (2011) note excessive

global responses in comparison with observations to both

the Krakatoa volcanic eruption in 1883 and eruptions in

1902 using CCSM3. Furthermore, Gent et al. (2011)

postulate that CCSM3 temperature trends over the in-

dustrial period match observations, because overly large

volcanic events partially compensate for the lack of in-

clusion of the indirect effect of aerosols in themodel. One

reason why CCSM3 may not be modeling large volcanic

eruptions accurately is that CAM3 assumes a single par-

ticle radius for all volcanic aerosols. It has been shown

that in larger volcanic eruptions, the particle radii tend to

become larger, thus less radiatively effective, and pre-

cipitate out faster than smaller aerosols (Timmreck et al.

2010). Timmreck et al. (2009) showed that by changing

the volcanic particle radius, the temperature effects from

volcanic eruptions could be changed significantly. Nev-

ertheless, some proxy reconstructionsmay not be entirely

reliable for indicating temperature responses to large

volcanic events either. Mann et al. (2012) show that,

during very large volcanic events, proxy temperature

records based on tree-ring data from near tree lines may

not reproduce the strength of the cooling signal and may

shift its timing if gaps are introduced into the tree-ring

chronology. Only the residual cooling in the years fol-

lowing a year with no tree rings is then detected. Fur-

thermore, Mann et al. (2012) note that volcanic aerosols

encourage tree-ring growth by diffusing visible light,

which also obscures the reduction in temperatures fol-

lowing a volcanic event.

Thus, the millennium-time-scale simulations reproduce

temperature trends and some temperature responses to

external forcings in the Northern Hemisphere tem-

perature proxy records. Differences are apparent for

large volcanic events, which may indicate both an un-

derestimation in proxy records dependent on tree-ring

data and an overestimation of the volcanic response in

CCSM3. Next, we present an overview of the charac-

teristics of the simulations’ representations of those

components of internal climate variability that are ex-

pected to possibly influence Greenland climate.

The atmospheric modes of interest we consider include

the NAO and the EA, which are defined as the first and

second principal components of annual sea level pressure

anomalies in the North Atlantic (north of 208N and

within 908W–308E). Projections of these modes onto sea

level pressures at both T42 and T85 resolutions are pro-

vided in Fig. 1. Climatological wind vectors for simula-

tions at each resolution and between 700 and 925hPa are

included for reference.As discussed previously, theNAO

is thought to play an important role in regional Green-

land climate patterns, because of its influence on the

North Atlantic jet. However, Woollings et al. (2010)

showed that changes to the eddy-driven North Atlantic

jet are not necessarily well described by the NAO alone

but by a rotation in NAO 2 EA phase space. Woollings

et al. (2010) demonstrated that in ERA-40 daily data

the NAO 1 EA captures the dominant shifts in jet

speed, where a positive (negative) index corresponds

to a faster (slower) North Atlantic eddy-driven jet. On

the other hand, the NAO 2 EA axis captures most of
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the variability in jet latitude, where a positive (negative)

index indicates a northward (southward) shift of the jet.

We projected both the NAO 1 EA and NAO 2 EA

annual indices onto sea level pressures, and we super-

imposed the projections of these modes on wind vectors

from between 700 and 925 hPa over the contours in Fig. 5.

We thereby find that the relationships identified by

Woollings et al. (2010) are reproduced in our simula-

tions. The NAO1EA projections primarily involve an

increase in the speed of the climatological winds, while

the NAO 2 EA is correlated with a northward shift of

the midlatitude jet by approximately 158. There are no-

ticeable resolution differences in the projections of the

NAO 1 EA and NAO 2 EA modes in Fig. 5. In both

modes, the site of the low pressure center is shifted to the

east in the T85 configuration as compared to the T42

configuration. For the NAO2EA, this has the result of

splitting the low pressure center into two maxima.

FIG. 5. Projections of the (a),(b) NAO 1 EA and (c),(d) NAO2 EA onto Northern Hemisphere sea level pressures (hPa) for (a),(c)

T42 and (b),(d) T85 simulations. Superimposed over these contours are projections of these modes on wind vectors (m s21) for DJF from

the corresponding simulations.
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There is no evidence of external forcing of the NAO,

the EA or either of their linear combinations in the

preindustrial- and industrial-era simulations. Further-

more, the spectra of both the NAO and EA are consis-

tent with white noise processes in the annually averaged

data from our millennium simulations. This result is

reasonable given that the NAO and EA are understood

to be red noise processes withmemory time scales on the

order of 9–10 days (Casado and Pastor 2012), which is

short enough to not be detectable in annual data. Also,

Casado and Pastor (2012) show that CCSM3 daily data

obtained from the CMIP3 twentieth-century experi-

ment match the ERA-40 data time scales for both the

NAO and the EA reasonably well.

We explore next the behavior of North Atlantic sea

ice cover over the preindustrial period. North Atlantic

sea ice extent is strongly related to both the AMOC and

AMO. Thus, we discuss the relationships between these

variables after presenting each individually. North At-

lantic sea ice cover is defined here by the annually av-

eraged area of monthly sea ice extent enclosed within

the 15% concentration limits north of the equator and

bounded by 908W and 908E. The regions of highest

variability in annual sea ice cover in these simulations

are first in the Barents Sea, second along the path of the

East Greenland Current and around the periphery of

the Greenland–Iceland–Norwegian (GIN) seas, and

third in the region south of Greenland. Annual sea ice

climatologies for all runs are shown in Fig. 6 together

with maps of their standard deviations. Annually aver-

aged North Atlantic sea ice extents increase from the

twelfth to the sixteenth century and rapidly decrease

during the industrial period (Fig. 7a). These trends are

not replicated in either control run, which indicates that

the increase is a robust response to external forcings

during the period. In particular, there are abrupt in-

creases in sea ice extent just following the largest vol-

canic events, with recoveries on decadal time scales.

This prolonged sea ice response to large volcanic events

is consistent with previous studies, particularly given

that the largest volcanic eruption in 1258wasmodeled as

a tropical eruption in both volcanic datasets used here

(Schneider et al. 2009) and the clustering of large vol-

canic events during the thirteenth and fifteenth centuries

(Miller et al. 2012).

We define the AMOC as the maximum of the annu-

ally and longitudinally averaged ocean streamfunction

in the Atlantic basin north of 288N and deeper than

500m. In the plot of the AMOC maxima time series

(Fig. 8a), the first point of note is that the AMOC

strength declines gradually to the sixteenth century and

increases rapidly at the beginning of the twentieth cen-

tury in all of the runs. As with sea ice, these trends are

not present in either of the control runs over an equiv-

alent period of time following the transient simulation

initialization dates. Furthermore, the AMOC decreases

are not simply due to coherence in the low-frequency

temporal modes across our simulations, because the

declines are present in runs at both resolutions, which

are initialized from different simulations. Consequently,

these AMOC variations are responses to the external

forcings, which are all atmospheric in origin.

Second, mean AMOC strength values are the same

for transient simulations at both resolutions, but the

standard deviations are nearly two times higher in the

T42 simulations than the T85 simulations. The AMOC

spectra in Fig. 8b show that most of the power in the

AMOC time series is on time scales longer than 15 yr for

simulations at both resolutions. Standard deviations do

not decrease significantly from the control to the tran-

sient simulations, so we are not seeing the same sup-

pression in AMOC variability as Bryan et al. (2006) did

with the same model. However, the AMOC standard

deviations we calculate for the T42 control and transient

simulations are 0.71 6 0.02 Sv (1 Sv [ 106m3 s21) and

agree with the control values in Bryan et al. (2006),

whereas the T85 values are 0.3816 0.007 Sv (difference

p , 0.001) and are three times smaller than the control

values reported in Bryan et al. (2006). Instead, they

agree with the low standard deviations of T85 simula-

tions in Bryan et al. (2006) during the recovery from

substantial transient forcing. The discrepancies in vari-

ability between AMOC maxima in these analyses and

those reported in Bryan et al. (2006) may be explained

by shifts in the time scales of AMOC variability ex-

hibited by the AMOCmaxima time series in their study.

Danabasoglu (2008) and d’Orgeville and Peltier (2009b)

also find similar shifts in AMOC time scales in their

CCSM3 simulations. Our simulations have been run

longer than any of these earlier analyses and exhibit

consistent power spectra throughout the time series.

Thus, their regime shifts may represent changes because

of the equilibration process. Nevertheless, the factor of 2

difference in overall AMOC variability between the

simulations at T42 and T85 indicate that the simulated

AMOC is behaving fundamentally differently at the two

resolutions. Given that the ocean and sea ice model

resolutions are the same in both cases, it appears that the

difference is a result of interactions between the ocean

and atmosphere components and possibly through the

atmosphere’s effects on sea ice. Further analysis of these

interactions is beyond the scope of this paper.

Next, the AMO is defined as the difference between

Atlantic (808W–308E) and global-mean annual sea sur-

face temperature anomalies within 08–708N (Deser et al.

2010). The AMO exhibits substantial variability on
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FIG. 6. Annual sea ice concentration climatologies averaged over transient simulations at resolutions of

(a) T42 and (b) T85 and (c),(d) corresponding standard deviations. Also, annual sea ice thickness clima-

tologies for (e) T42 and (f) T85 with the 15% concentration contour marked.
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multidecadal and centennial time scales. Figure 7b

shows that the AMO decreases in all the transient sim-

ulations from the twelfth to the sixteenth century, which

is the same period in which North Atlantic sea ice extent

increases (Fig. 7a). This decrease is not reproduced in

the control runs. There is no increase in the AMO over

the industrial period, as may be expected based on in-

creasing Northern Hemisphere temperatures and de-

creasing North Atlantic sea ice extent. However, this

does not imply that North Atlantic sea surface temper-

atures did not warm over this period, but rather that

there were no substantial increases in NorthAtlantic sea

surface temperatures during this period beyond global-

mean changes. Instead, there is a consistent increase in

the AMO in all simulations in the mid-nineteenth cen-

tury, with a peak in the 1870s followed by a decrease to

the mid-twentieth century. The cause of this pattern is

unknown.

As described in the introduction, the NAO, AMO,

AMOC, and North Atlantic sea ice extent are un-

derstood to be interrelated. We find connections be-

tween these variables in our simulations as well,

although with stronger correlations in the T42 simula-

tions than in the T85 simulations. The AMO and sea ice

FIG. 7. (a) Sea ice extent within the 15%concentration limits as a function of time for both annual (in light colors) and

smoothed data. (b) AMO time series for both annual (in light colors) and smoothed data.

FIG. 8. (a) Time series of the AMOC for all millennium-time-scale simulations. (b) Power spectra of AMOC time

series for all runs with an atmospheric resolution of T42 (black) and T85 (red) calculated using Blackman–Tukey

methods and a Tukey window truncated at 1/5 the number of data points. Dashed lines indicate the red noise spectra

for time series with the same lag-1 autocorrelation coefficients as the data, and shading indicates 95% confidence

intervals.
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are strongly negatively correlated (r;20.6 for T42 and

r ; 20.5 for T85) when these variables are either in

phase or the AMO lags sea ice by 1 yr. The AMOC lags

behind both of them. It is positively correlated with the

AMO when it lags by 0–5 yr at values of 0.4 for the T42

simulations and 0.25 for the T85 simulations. Its corre-

lations with sea ice varymorewith resolution, as it has its

strongest anticorrelations of approximately 20.55 with

T42 simulations at lags of 5–7 yr and anticorrelations of

20.25 with T85 simulations at lags of 3–15 yr. Thus, the

AMO, AMOC, and sea ice appear to be responding

similarly to climate forcings or are influenced by each

other, albeit on different time scales.

In the simulations, the AMO, AMOC, and North

Atlantic sea ice extent all respond consistently and sig-

nificantly to solar insolation and the NAO 2 EA. The

AMOC and AMO are strongly positively correlated

with low-frequency variations in solar insolation (r; 0.4

and 0.3, respectively), and sea ice is strongly negatively

correlated with them (r ; 20.4). There appears to be

a connection between the decreasing orbital contribu-

tion and multidecadal total solar irradiance component

and the slow variations in these time series over the

millennium. The AMO and AMOC (in T85 simulations

only) are significantly negatively correlated with the

NAO 2 EA (r ; 20.15 for both) when they lag by

5–15 yr. Sea ice, on the other hand, is significantly posi-

tively correlated with the NAO2EA (r; 0.16) when it

lags by 2–7 yr. These correlations with the NAO 2 EA

suggest the presence of a response mechanism as pre-

viously described in the introduction of this paper.

Other climate indices generate correlations with only

subsets of these North Atlantic variables. For example,

the AMO and sea ice extent are strongly correlated

(r ; 20.3 and 0.3, respectively) with volcanic forc-

ing after a lag of 1 yr. The AMOC does not show any

significant relationship with volcanic forcing in our

simulations.

The PDO is defined as the first principal component of

the difference between sea surface temperature anom-

alies in the North Pacific (208–658N, 1208E–1008W) and

global sea surface temperature anomalies (Deser et al.

2010). Analyses of its structure in the CCSM3model are

presented in d’Orgeville and Peltier (2009a). The PDO

has very similar characteristics in all our simulations:

there is no significant trend in the time series, and the

variances are all of similar magnitude. Also, the PDO

spectral characteristics illustrated in Fig. 9 are similar at

both resolutions and exhibit a large peak in power on

a time scale of approximately 13 yr.

Possibly the least likely source of climate variability in

Greenland that we consider is that related to ENSO.

The ENSO index used in this analysis was defined by sea

surface temperature anomalies in the Ni~no-3.4 region.

The annually averaged time series for this index are

shown in Fig. 10, with the corresponding 30-yr Gaussian

filtered signals superimposed. There is intense variabil-

ity in the index on annual time scales, and occasional

multidecadal excursions from the index mean. The low-

frequency shifts to negative ENSO values in Fig. 10

occur in all of the runs and coincide with the largest

volcanic events in the forcing time series. Furthermore,

the ENSO responses to the 1258 volcanic event are

weaker in the runs that were forced by the Crowley et al.

(2008) dataset (in red, cyan, and magenta), whose

aerosol optical depth values are lower than the values

for the same eruption in the Gao et al. (2008) dataset.

Although the ENSO time series is shifted in the years

following large volcanic events, their values continue to

vary at high frequencies with similar amplitudes. This

suggests the possibility that these are not actually ex-

tended La Ni~na events but artifacts of the definition of

ENSO as anomalies with respect to the local clima-

tology during periods of global sea surface temperature

change.

b. Explaining Greenland’s surface climate variability
in terms of global climate characteristics

Greenland temperatures are strongly correlated with

Northern Hemisphere temperatures in all the preindus-

trial simulations and have their highest correlations

FIG. 9. PDO power spectra for the T42 and T85 simulations

calculated using Blackman–Tukey methods and truncating the

Tukey window at the number of data points. The 95% confidence

limits are in shading, and dashed lines indicate equivalent red noise

spectra.
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when they lead by 1 yr (r 5 0.52 6 0.01, p , 0.001). In

the T42 (T85) control run, however, correlations be-

tween Northern Hemisphere and Greenland tempera-

tures are at most 0.3 (0.1), also when Greenland

conditions lead the Northern Hemisphere. This sug-

gests that there are similarities in the responses of both

Greenland temperatures and the hemispheric average

to external forcings in our simulations, although the

hemispheric response is slower. Note in Fig. 11 that vol-

canic events do not appear as anomalous in the Green-

land time series as they did in the hemispheric averages.

Also, internal climate variability has a larger effect on the

regional scale.

Resolution differences are present in the simulated

Greenland time series. As with the AMOC, the ampli-

tude of Greenland temperature variability is lower for

the high-resolution simulations than the low-resolution

runs. The standard deviation in Greenland temperatures

is 0.928 6 0.018C in the T85 simulations versus 1.178 6
0.028C in the T42 simulations (difference p , 0.001).

Temperature averages also differ, with T85 values 2.58C
(p, 0.001) colder than the T42 simulations. As discussed

in section 2b, previous analyses indicate that the Arctic is

roughly 28C colder at T42 than T85 because of a stronger

low pressure bias in the T85 Arctic climate (deWeaver

and Bitz 2006; Hack et al. 2006). Thus, the temperature

differences obtained here appear anomalous, even

though roughly 1.58C of this difference can be explained

by topography alone. Greenland precipitation rates, on

the other hand, are twice as large in the high-resolution

simulations compared to the low-resolution simulations,

with values of 1.019 6 0.002m of water equivalent

(mwe) per year deposited over Greenland versus 0.5346
0.001mweyr21 for the T42 simulations (difference p ,
0.001). This is consistent with the higher overall topog-

raphy at T85 resolution and the sharper topographic

gradients present along the coasts of Greenland. Since

variance scales with average precipitation (Andersen

et al. 2006), we find a corresponding difference in pre-

cipitation standard deviations of 0.093 6 0.001 versus

0.051 6 0.001mweyr21 (difference p , 0.001). Conse-

quently, in order to perform comparisons using these time

series, we first convert them to anomalies. Greenland

FIG. 10. Annually averaged Ni~no-3.4 time series for all runs with

30-yr Gaussian averages. Volcanic aerosol optical depths are

shown below, with black denoting Gao et al. (2008) and red de-

noting Crowley et al. (2008).

FIG. 11. Time series of simulation ensemble means in black and

Andersen et al. (2006) ice core data in red for (a) simulated

Greenland average temperatures and d18O averaged over three

ice cores and (b) normalized annual rates of simulated Greenland

average precipitation and Andersen et al. (2006) average accu-

mulation from the same ice cores. Gray shading indicates one

standard deviation and all datasets are smoothed by a 5-yr running

average.
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temperature anomalies are defined with respect to

averages over years common to all simulations, and

precipitation anomaly time series are created by nor-

malizing precipitation rates in each grid cell to their

time-average local values and averaging spatially over

Greenland.

To assess the accuracy of CCSM3’s characterization

of Greenland climate over the preindustrial period,

temperature and precipitation time series are com-

pared against d18O and accumulation time series from

Andersen et al. (2006) over the years 850–1974. The d18O

record is generated from an average over available years

of three historical ice core records [Dye-3, Greenland Ice

Core Project (GRIP), and North Greenland Ice Core

Project (NGRIP)]. Since the ice core records are ob-

tained from sites only in the interior of the Greenland ice

sheet, they do not provide information about tempera-

ture or precipitation changes near the ice sheet margins,

which are the warmest regions and areas of highest pre-

cipitation. Nevertheless, these datasets cover the entire

period of our preindustrial simulations and are less

susceptible to regional conditions than any one ice core

would be, so the comparison is a useful one.

The d18O provides information about the fractionation

processes that occurred from the time moisture was first

evaporated from the ocean to its deposition as snow

(Sturm et al. 2010). As such, a d18O chronology only re-

flects local temperature variations as long as the transport

paths and fractionation processes along this trajectory

remain the same with time (Sturm et al. 2010). Assuming

that this condition is satisfied and that deposition occurs

throughout the year, we apply a linear relationship to

convert d18O changes to annual temperatures, T 5
(d18O 1 13.7 ppm) (Johnsen et al. 1989). Greenland

temperature anomalies from the simulations are

smoothed with a 5-yr running average to match the

Andersen et al. (2006) record and are plotted with it in

Fig. 11a. The variance of the d18O record is 16% lower

than that in the T85 simulations and 42% lower than in

the T42 simulations. Furthermore, the Greenland tem-

peratures decrease from the medieval period onward,

unlike the d18O record. Consequently, temperature trends

for the simulations are an order of magnitude larger than

for the ice core d18O records. Correlations between the

Andersen et al. (2006) records and data from our simu-

lations are insignificant, except for the T85 simulations,

which are correlated at 0.14 6 0.03 (p 5 0.05), and for

simulations employing the Crowley et al. (2008) volcanic

reconstruction, which are correlated at 0.16 6 0.04 (p 5
0.05). It is difficult to ascertain whether these two cases of

significance are independent, since more simulations at

T85 resolution employ the Crowley et al. (2008) re-

construction. The spectra of Greenland temperatures and

d18O are presented in Fig. 12a. There are no significant

differences in spectra between the resolutions or with

respect to the Andersen et al. (2006) datasets. Note that

the uncertainties in the d18O spectra are larger since we

have only a single dataset.

The accumulation record is extracted from layer

thickness data in the same three ice core records by

normalizing with respect to mean accumulation rates

at each site and applying a statistical model to find

FIG. 12. Comparison between spectra for Andersen et al. (2006) ice records and simulations at resolutions of T42

and T85 for (a) d18O and temperature and (b) normalized accumulation and Greenland average normalized pre-

cipitation. Both datasets have 5-yr running averages applied, and shading indicates 95% confidence intervals. Dashed

lines indicate reference red noise spectra for all datasets, given their lag-1 autocorrelation values.
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a common signal between all the records (Andersen et al.

2006). Accumulation is not solely a measure of pre-

cipitation, since it also depends onmelt and redistribution

processes. However, assuming that these processes are

consistent with time under 5-yr smoothing, accumulation

variations are a good indication of precipitation changes

(Andersen et al. 2006). The comparison with simulated

Greenland precipitation is plotted in Fig. 11b. Since the

accumulation and precipitation records are normalized

locally before averaging, comparing their variances is not

very instructive. Furthermore, neither time series exhibits

significant trends, and correlations between the two are

insignificant. Finally, Fig. 12b shows power spectra for the

accumulation and precipitation datasets. There are few

resolution differences between the simulated pre-

cipitation spectra, and the accumulation spectra also ap-

pear consistent within uncertainties.

Although Greenland temperatures and precipitation

are uncorrelated with data from Andersen et al. (2006),

this does not necessarily indicate that Greenland condi-

tions are especially poorly modeled in these simulations.

Internal variability plays a much more important role in

regional analyses than hemispheric or global analyses,

and no single simulation could be expected to reproduce

the exact historical patterns of internal climate variability.

However, the fact that there is a stronger correspondence

between simulations than between the simulations and

the observational records suggests that the simulations

exhibit some consistent responses to external forcings that

are not matching the ice core reconstructions.

Thus far, our analyses have been based on averages

over all of Greenland. It is also useful to compare how

well the model is capturing observed regional patterns

of temperature and precipitation. Figure 13 shows

FIG. 13. (a) QuikSCATmap of melt extent over Greenland for the years 2000–04 taken fromWang et al. (2007). Colors represent areas

where melt has occurred, while white regions experienced no melt. (b) Model maps of total meltwater production (melted snow) over the

melt season [May–October (MJJASO); cma21]. The top maps of (b) correspond to Mill_T42_all_Gao, and the bottom maps correspond

to Mill_T85_all_Crowley2. (c) Cold years are identified separately for each simulation and are marked by green bars in the Greenland

temperature time series, whereas warm years are defined to be the years 1995–99.
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extremes in melt extent variability predicted by the

model for two runs with different resolution. Surface

melt extents are larger in the warm period (1995–99)

than the cold period (shown in green bars in Fig. 13c)

at both resolutions, and both simulations produce

similar melt areas to that from Quick Scatterometer

(QuikSCAT) data for the years 2000–04 (Fig. 13a).

However, the differences in the distribution of surface

melt are as significant between the two resolutions as

they are over a given period for either run. The melt

area in the T85 run conforms to the coast in a manner

more consistent with the QuikSCAT map, and it covers

a smaller area overall than in the lower-resolution run,

particularly in the south. These features are consistent

with differences in orographic heights between the two

resolutions as shown in Fig. 3. Melt production extends

much farther up the western coast of Greenland in the

T85 simulation.

We employ lagged correlation analyses between

Greenland temperature and precipitation time series

and the modes of variability defined in the previous

section to provide context for the regression analyses

that follow. Greenland temperatures and precipitation

are correlated with each of North Atlantic sea ice, the

AMO, and the AMOC such that the relationships be-

tween those variables are reproduced. For example,

the AMO and AMOC are positively correlated with

Greenland temperatures but lag by 2 and 6–11 yr, re-

spectively, whereas sea ice extent is negatively corre-

lated and lags by 1 yr. As a result, including any one of

these variables in the regression analysis lagged appro-

priately is sufficient to describe the relationships to all

three. However, we find that when we include any one of

them we obscure connections between Greenland con-

ditions and the remaining predictor variables, since the

cross correlations with sea ice extent, the AMO, or the

AMOC are as significant as the relationships between

Greenland conditions and all the remaining predictor

variables. Thus, we conclude that Greenland surface

climate is responding in concert with North Atlantic sea

ice extent, the AMO and AMOC, but we do not include

them in the regressions.

The NAO1EA is significantly negatively correlated

with Greenland temperatures and precipitation in all of

the T85 simulations when the variables are in phase.

Relationships with the lower-resolution simulations

are less consistent. Correlations with the NAO 2 EA

are similar to those described for the AMO, AMOC,

and sea ice. The NAO 2 EA is significantly negatively

correlated with Greenland temperatures when the

variables are in phase. In the T85 runs, these correla-

tions are only significant for a single year, but in the T42

simulations the correlations remain significant for

temperatures lagging the NAO 2 EA up to at least

a decade. TheNAO2EA is only significantly correlated

with Greenland precipitation in the T42 runs, with weak

positive correlations when the variables are in phase and

weak negative correlations for precipitation lagging the

NAO 2 EA for the following 5 yr.

In most transient runs, the PDO shows positive corre-

lations with both Greenland temperatures and pre-

cipitation. However, the lag when this positive correlation

is maximized is inconsistent between simulations.

Relationships between Greenland temperatures and

precipitation and ENSO are only significant over low

frequencies, which we showed were responses to vol-

canic forcing. Consequently, we do not include ENSO in

our regression analyses.

Thus, we perform regression analyses of Greenland

average annual temperatures and total annual precip-

itation against volcanic and solar external model forc-

ings and internal modes of variability, including the

NAO 1 EA, NAO 2 EA, and PDO. The results of

the regression analysis on smoothed data are shown in

Table 2. Uncertainties in the regression parameters in-

clude corrections for autocorrelations in the residuals

and are estimated to be at most 0.12 for temperature and

0.15 for precipitation. The regression parameters are

plotted with these error bars in Fig. 14. The 95% confi-

dence intervals for the beta values range between 0.17

and 0.24 for temperature and between 0.24 and 0.30 for

precipitation.

There are a few ways to test the robustness of these

results. Since we have employed two different model

resolutions and two different volcanic reconstructions in

our mini ensemble, we can first test the consistency of the

regression parameters between simulations. This provides

insight into the dependence of our results on model con-

figuration and coincidence between the external forcing

and internal variability characteristics. The secondwaywe

can test the robustness of these results is by splitting each

time series into segments and comparing regression values

obtained over different sections of the data. Third, we can

test the robustness of the regression results by removing

predictor variables and seeing how this affects the

remaining regression coefficients. Assuming the predictor

variables are independent of one another, there should be

no effect. This particular suite of variables passes both

tolerance and condition-number tests of multicollinearity

easily (Sen and Srivastava 1990), so in principle such

multicollinearity should not be significantly affecting the

results.

On the basis of these analyses, we obtain robust re-

sults for solar insolation, volcanic aerosol optical depth,

and the NAO 2 EA, which all are also significantly re-

lated to the AMO, AMOC, and North Atlantic sea ice.
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All the runs show consistent and significant positive re-

gression relationships for both Greenland temperatures

and precipitation with insolation variability. However,

solar regression values decrease in importance for partial

regression analyses performed on 500-yr time segments

starting after the twelfth century in runs employing the

Gao et al. (2008) volcanic dataset (Fig. 15). These dif-

ferences do not appear to be related to differences in

trends in these datasets. Instead, these changes appear

to be due to occasional coherence between the volcanic

TABLE 2. Regression coefficients for millennium simulations.

Response Simulation Volcanic Solar 1 orbital NAO 1 EA NAO 2 EA PDO R2

Temperature Mill_T42_ctl — — 0.21 20.50 0.09 0.36

Mill_T85_ctl — — 0.05 20.54 0.05 0.29

Mill_T42_all_Gao 20.24 0.36 0.06 20.31 0.20 0.45

Mill_T42_all_Crowley 20.25 0.43 0.04 20.42 0.14 0.60

Mill_T42_sol_Gao 20.29 0.26 0.13 20.51 0.05 0.58

Mill_T85_all_Gao 20.42 0.51 20.09 20.46 0.15 0.66

Mill_T85_all_Crowley 20.46 0.50 0.15 20.28 0.01 0.70

Mill_T85_all_Crowley2 20.29 0.64 20.17 20.24 20.05 0.71

Precipitation Mill_T42_ctl — — 0.15 20.26 0.07 0.11

Mill_T85_ctl — — 0.10 20.30 20.04 0.10

Mill_T42_all_Gao 20.23 0.35 0.02 20.23 0.13 0.33

Mill_T42_all_Crowley 20.20 0.43 0.03 20.30 0.10 0.42

Mill_T42_sol_Gao 20.30 0.20 0.10 20.43 0.03 0.45

Mill_T85_all_Gao 20.47 0.37 20.17 20.25 0.11 0.44

Mill_T85_all_Crowley 20.43 0.38 0.06 20.12 20.17 0.40

Mill_T85_all_Crowley2 20.20 0.60 20.14 20.17 20.16 0.50

FIG. 14. Regression parameters for the predictor variables listed. Different colors correspond to different simulations. (a) Greenland

temperature regressions and (b) Greenland precipitation parameters are shown.
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FIG. 15. Regression coefficients obtained with smoothed Greenland temperatures evaluated over successive periods

of 500yr for (a) Mill_T42_all_Gao, (b) Mill_T85_all_Gao, (c) Mill_T42_all_Crowley, (d) Mill_T85_all_Crowley,

(e) Mill_T42_sol_Gao, and (f)Mill_T85_all_Crowley2. Regression parameters are plotted as a function of start year in

the 850–1850 time period. The fractional variance explained by the regressions over each time segment is plotted in

black. Horizontal dashed lines indicate values obtained for the whole period.
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aerosol time series and solar insolation. Although these

datasets are independent of each other over the entire

preindustrial millennium, they are correlated during

subsets of that period with values between20.3 and 0.3

for the Gao et al. (2008) dataset and between20.5 and

0.3 for the Crowley et al. (2008) dataset. Consequently,

the regression parameters over the entire period are

more reliable in this case. Overall, the solar regression

values are not significantly affected by the removal of

other variables from the complete analysis. Thus, we

can conclude that there is a significant positive corre-

lation between Greenland temperatures and pre-

cipitation and insolation at the top of the model.

We also obtain a robust signal for volcanic forcing,

confirming previous work that volcanic events yield

lower temperatures over Greenland. We can state fur-

ther that precipitation is also suppressed in our simula-

tions after a volcanic event, and these effects are

sustained for 5–10 yr following the volcanic event. From

Fig. 15, we can see that the volcanic regression relations

are very consistent with time, with the exception of two

runs, Mill_T42_all_Gao and Mill_T85_all_Crowley.

These runs show a marked increase in regression pa-

rameters following the 1258 volcanic eruptions. One of

the peculiarities of the volcanic forcing datasets is that

they are dominated by that one extremely large event. It

is possible that the response to that one event is affecting

volcanic regressions over the entire period, although

other simulations do not show a similar sensitivity to it.

We also note that the response of Greenland pre-

cipitation and temperatures to volcanic forcing is non-

linear, since the short duration of volcanic aerosol

loading yields Greenland temperature and precipitation

responses for 5–10 yr afterward. Thus, in order to better

attribute the volcanic response using a linear model, we

may need to fit to a volcanic response fingerprint, which

captures such nonlinearities.

As discussed previously, the two North Atlantic at-

mospheric indices included in the regression analyses

represent accelerations (NAO1EA) and shifts (NAO2
EA) of the eddy-driven component of the North Atlantic

jet. We find that the relationship between the NAO 2
EA and Greenland temperatures exceeds 95% confi-

dence limits for all the runs. We also show in Fig. 15

that in half of the runs they remain entirely consistent,

whereas in the other half they exhibit trends. Negative

correlations with the NAO2EA correspond to overall

cooling over Greenland when the jet shifts northward,

which is consistent with more cold Canadian Arctic air

advected over Greenland. As this air holds less moisture,

a reduction in precipitation is also consistent. Merely

strengthening or weakening the jet does not seem to have

much net effect over all of Greenland, however. All the

T85 simulations show significant, negative regression

parameters with respect to NAO1 EA prior to applying

the 14-yr Gaussian smoothing. However, after smooth-

ing, the T85 values are inconsistent. The regression pa-

rameters for NAO 1 EA are insignificant with and

without smoothing for T42 simulations. Such differences

as a function of model resolution may be a result of the

sharper topographic coastal gradients in the T85 simula-

tions. Regression maps of the NAO 1 EA on surface

temperatures (not shown) indicate cooling along the west

coast of Greenland and a warm tongue along the east

coast, which penetrates much farther over Greenland in

the T42 simulations. This result is consistent with eddy

temperatures during DJF plotted in Fig. 8 of deWeaver

and Bitz (2006). Thus, the regression values between the

NAO 1 EA and temperature do not appear to be con-

sistent with time or very strong.

Since we performed our regressions against the NAO

combined with the EA, we cannot make direct com-

parisons with previous studies. However, by examining

correlation maps between Greenland temperatures and

the NAO in our simulations (not shown), we find that

the NAO on its own predicted generally lower temper-

atures and less precipitation. These results are less

consistent between simulations than with the combined

NAO and EA modes and are less significant overall.

Projections of the NAO on Greenland temperatures in

our simulations indicate that responses over Greenland

vary significantly by region. Consistent with Fettweis

(2007) and Hanna et al. (2013), we see the most negative

correlations in the southwest or west and positive cor-

relations in the mideast of Greenland. Precipitation

correlation patterns are much more variable between

simulations.

Finally, the PDO is not found to be a robust predictor

of Greenland temperatures or precipitation. Its re-

gression parameters are insignificant in all the runs and

over the entire time series.

Overall, the regressions have been very successful at

capturing a significant fraction of the multidecadal var-

iability of Greenland temperatures and precipitation

over the past millennium. Consequently, they can be

usefully applied as empirical models of Greenland

temperatures and precipitation under natural conditions

over the industrial period. We obtain volcanic aerosol

mass, solar insolation, and internal modes of variability

from the industrial simulations to generate estimated

Greenland temperature and precipitation time series.

We normalize all of these variables with respect to their

preindustrial means and standard deviations and apply

the regression model. We compare the resulting time

series against Greenland conditions derived directly

from the model to obtain an estimate of the roles that
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anthropogenic greenhouse gases and aerosols play in

Greenland surface conditions. In Fig. 16, we plot the

average of the differences between empirically pre-

dicted and modeled Greenland temperatures and pre-

cipitation in black, with gray shading indicating 95%

confidence intervals derived from the residuals over the

preindustrial period. In red, we plot the differences for

the natural forcing–only run, Ind_T42_sol_Gao.

First, we compare how well the empirical regression

model predicts conditions over this period for the nat-

ural forcing–only run. The empirical estimates do not

explain all the variability in this run, with differences

varying between 0.68 and 20.88C while remaining

slightly negative on average. In contrast, when we av-

erage over all the remaining transient simulations, we

can reduce the influence of as yet unexplained vari-

ability and extract an anomalous signal in the 1950s.

Since that decade, temperatures increase in a way not

predicted by the regression model in the average of the

full-forcing runs. On the other hand, the Greenland

precipitation residuals are consistent with the regression

model until the 1970s. Thus, we detect unexplained in-

creases in simulation averages of Greenland tempera-

tures and precipitation in the 1950s and 1970s,

respectively. In contrast, we obtain anomalous increases

in temperature or precipitation by 1980 in fewer than

half of the individual simulations. Thus, these results are

consistent with Hanna et al. (2008), who find that his-

torical Greenland temperatures are only significantly

associated with Northern Hemisphere temperatures

(and thus global warming) after the early 1990s. Instead,

Hanna et al. (2008) find Greenland temperatures are

mainly associated with NAO variability during the

previous several decades. Our results suggest that it may

be difficult to isolate comparable temperature and pre-

cipitation changes in observed records from Greenland

prior to the year 2000.

4. Conclusions

We have generated a suite of fully coupled simula-

tions of the global climate through the periods 850–1850

and 1850–2000 using CCSM3. The six simulations are

run with two different resolutions and employ two dif-

ferent volcanic reconstructions. Orbital, total solar ir-

radiance, volcanic, and greenhouse gas forcings are all

specified to vary in time over the course of the pre-

industrial simulations, with the exception of one run in

which greenhouse gases are held constant while the re-

maining forcings varied. We find that global surface

temperatures compare well with proxy reconstructions

over this period, including the development of a medie-

val climate anomaly and little ice age. However, the

global temperature response to large volcanic events is

much stronger than these proxy records would suggest,

which is likely a combination of an overamplified re-

sponse in themodel and an underestimation of the effect

of these volcanic events in the proxy records.

Using the preindustrial runs, we have explored natural

variability in Greenland temperatures and precipitation

over the past millennium. This has included the roles of

external climate forcings such as volcanic and solar

FIG. 16. Average differences between simulated Greenland (a) temperatures or (b) precipitation and those

predicted by applying the preindustrial regression model for the fully transient simulations in black. Gray

shading encloses 95% confidence intervals for residuals over the preindustrial era. Differences between simu-

lated and regression-predicted (a) temperatures and (b) precipitation from the natural forcing–only run are

plotted in red.
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insolation, as well as internal sources of variability in-

cluding the NAO, EA, PDO, and ENSO. We have

compared the model reconstructions of Greenland tem-

peratures and precipitation against observations com-

piled from three different ice core records and find that

there are no significant correlations between our simu-

lations and the ice core records. The simulations also

indicate a decreasing trend in Greenland temperatures

over the past millennium that is an order of magnitude

larger than in the d18O record. On the other hand, sim-

ulated precipitation datasets show a similarly small trend

as in the Andersen et al. (2006) accumulation dataset.

Finally, the spectra from simulated data match spectra

from the ice cores within uncertainties. Regionally, res-

olution makes a big difference to the distribution of sur-

face melt in the simulations, and recent observed melt

seasons are similar to those predicted by the model.

We find that Greenland temperatures and precipi-

tation are very highly correlated with North Atlantic sea

ice variations (negatively), theAMO(positively), and the

AMOC (positively). We find that these climate features

all respond similarly and significantly to solar insolation

and the NAO 2 EA and all but the AMOC respond

similarly and significantly to volcanic aerosol optical

depth, although the timings of their responses vary. We

have employed multiple linear regression analysis to ex-

tract robust anticorrelations between volcanic forcing

and the NAO 2 EA component of internal variability

and Greenland temperatures and precipitation. We also

obtain robust positive correlations between solar in-

solation and Greenland conditions. The connections be-

tween other modes of internal variability and Greenland

surface conditions tend to be weak or inconsistent, pos-

sibly because of their more regional effects. Overall,

a linear combination of volcanic aerosol optical depth,

solar insolation, NAO 1 EA, NAO 2 EA, and PDO is

able to describe more than half of the multidecadal var-

iability in Greenland temperatures and at least a third of

the multidecadal variability in Greenland precipitation.

Finally, we demonstrate that the regression results

derived over the millennium period can be used to ex-

tract the influences of anthropogenic greenhouse gases

and aerosols over the industrial period. There are sig-

nificant increases in both Greenland temperatures and

precipitation that are not explained by our estimates of

natural, background variability in the 1950s and 1970s,

respectively.
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APPENDIX

Defining the Regression Model

We applied the following procedure on two runs,

Mill_T42_all_Crowley and Mill_T85_all_Crowley, in

order to define the regression model employed in these

analyses. The choice of variables determined on the

basis of these preliminary analyses was then employed

with the remaining runs.

First, we optimized the list of climate variables in-

cluded in the regression analyses. We maximized the

coefficient of determination R2, which represents the

proportion of the variance of the original Greenland

time series that is captured by all the predictor variables

taken together. At the same time, we minimized cross

correlations between the predictor variables. To estab-

lish significant relationships, we must know that the

predictor variables are independent of one another.

Otherwise, the regression estimate defined in Eq. (1) has

a degree of arbitrariness to it, as adjusting one regression

parameter can be compensated for by adjusting the re-

gression parameter of a second, correlated variable.

Second, we tested the residuals under the Gauss–

Markov conditions. Meeting the Gauss–Markov condi-

tions ensures that the least squares estimates we take as

the regression parameters are good representations of

the relationships we are examining (Sen and Srivastava

1990). These conditions are listed below with de-

scriptions of their implications in our analyses:

(i) The expectation value of the residuals should be

zero. This suggests two things: first that a linear

relationship is a reasonable model of the connec-

tion between Greenland climate and the other

climate indicators and second that there are no
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important variables missing from the regression

model. If a model satisfies this condition, then the

relationships between Greenland temperatures or

precipitation and other climate fields do not change

over the course of the simulations.

(ii) The variance of the residuals is independent of the

predictor variables. If this condition is violated,

then the regression parameter estimatesmay not be

biased, but their error estimates will not reflect

their real uncertainty.

(iii) The residuals are not autocorrelated. This requires

that, if there are autocorrelations in the Greenland

climate parameters resulting from multidecadal

signals, our time series is long enough to adequately

resolve these signals and they will be explained by

similar features in the predictor variables.

Besides the Gauss–Markov conditions, the regression

parameters may also be sensitive to the influence of

points far outside the rest of the distribution of values.

This is a result of the sensitivity of the ordinary least

squares method to differences between large values

(Sen and Srivastava 1990). When such points are pres-

ent, they often are detected in the residuals as violations

of the first criterion. We do not have evidence of any

such points in the Greenland temperatures or pre-

cipitation in Fig. 11.

In our datasets, the third condition was not often met,

particularly with Greenland temperatures. Greenland

temperatures and precipitation exhibit power at multi-

ple time scales, and not all the low-frequency variability

is explained by the list of climate fields used. Thus, the

residuals are autocorrelated and not in a way well

modeled as an autoregressive process. Consequently, we

reduced the effective number of degrees of freedom

employed in our estimates of the parameter un-

certainties to reflect this limitation.

Third, we examined the regression parameters to see

whether they were significantly different than zero. The

parameter uncertainties are defined by Eq. (2) (Sen and

Srivastava 1990), and we used the general expression

from Zwiers and von Storch (1995) to calculate the ef-

fective number of degrees of freedom,

ne5
n

11 2 �
n21

t51

�
12

t

n

�
r(t)

, where

r(t)5 �
n2t

i51

(�i 2 �)(�i1t 2 �)

(n2 t2 1) �
n

i51

(�i2 �)2

n2 1

. (A1)

Here, n and ne represent the original sample size and

the equivalent sample size, respectively. The term t is

the lag time, and r(t) is the autocorrelation parameter

in the regression residuals at that lag. We truncated the

sum over autocorrelations at the moment that they be-

came negative, since those autocorrelations act to in-

crease our degrees of freedom. Autocorrelation values

calculated at large lags are uncertain because of a lack of

data in evaluating them, so we could not guarantee that

these negative values were not significantly different

than 0. This method provides a conservative estimate

FIG. A1. Percentage of explained variance from (a) temperature and (b) precipitation estimates using regression

values generatedwith unfiltered data (solid lines) andwith filtered data (dashed lines). Different colors correspond to

different simulations.
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of the number of degrees of freedom. If any regression

parameters were not significantly different than zero,

then we removed those variables and started again.

Fourth, we tested whether it is preferable to apply

regression analysis to the datasets directly or to filter

them first. To this end, we calculated two sets of re-

gression parameters, one using unfiltered data and the

other with data smoothed by a Gaussian filter with a full

width at half maximum of 14 yr (i.e., s of 6 yr). To de-

termine which time scales the two sets of regression

parameters effectively capture, we calculated co-

efficients of determination using each set of regression

parameters and datasets smoothed by a succession of

Gaussian filters with different widths. Figure A1 shows

the R2 values as a function of dataset filter width for

unfiltered regression parameters in solid lines and 14-yr

filtered regression parameters in dashed lines. Re-

gression coefficients based on unfiltered datasets explain

high-frequency variations in Greenland temperature

and precipitation better than regression coefficients

obtained from analyses of filtered data. However, they

do a poorer job of explaining variations on time scales

longer than 5 yr. Since we are most interested in con-

tributions to variability on time scales longer than a de-

cade, we chose to perform our regression calculations

using 14-yr smoothed data.
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